
Towards Refinement and Generalization of
Reliability Models Based on Component States

Natasha Jarus, Sahra Sedigh Sarvestani, and Ali Hurson

Department of Electrical and Computer Engineering
Missouri University of Science and Technology

Rolla, USA 65409
Email: {jarus, sedighs, hurson}@mst.edu

November 6, 2019

1 / 24

Introduction

I Critical complex systems must be resilient.
I To achieve resilience, designers need a variety of data and

models.
I Integrating these data and models requires metamodeling —

understanding how the implications of various results overlap
and interrelate.

I As a demonstration of our metamodeling approach, we use
reliability: the probability that a system remains functional up
to time t.

I Connecting the same components differently can yield
different reliability at the system level.
I For example, a parallel system is more reliable than a series

system using the same components.

Generator Load
Rc1 = p

Rc2 = p

RS = p2 + 2pq

Generator Load

Rc1 = p Rc2 = p

RS = p2

2 / 24

Metamodeling for Model-Based Design

I Complex systems are often designed iteratively:
I requirements are gathered,
I an initial design is modeled,
I more detail is added to the design or the design is improved to

meet requirements,
I the improved design is modeled, and the process repeats.

I Metamodeling approaches can assist designers in creating and
updating models throughout this process by
I reducing the labor involved,
I preventing modeling mistakes,
I helping designers explore the design space, and
I giving models context by relating them to other models.

We seek to metamodel the creation and update of models.

3 / 24

Modifying Reliability Models

Two main goals motivate modification of a model:

I Refinement — adding more detail — such as:
I adding new components,
I dividing a component into sub-components, or
I strengthening a constraint on how a component behaves.

I Generalization — removing detail — such as:
I simplifying an unnecessarily complex representation of the

system or
I relaxing a constraint that is unrealistic or renders the design

infeasible.

4 / 24

Ultimate Research Objective

A Verifiable Method for Model Refinement and
Generalization

Refinement and Generalization ultimately modify the assumptions
a model makes about the system it represents. Therefore, we

1. analytically describe the system properties captured by a
family of related models,

2. formally define refinement and generalization in terms of these
properties.

Our goal is for the approach to be verifiable and automatable.

As proof of concept, we apply our method to a commonly used
family of reliability models — Markov Imbedded Structure (MIS).

5 / 24

Assumptions of MIS Reliability Models

I System state is determined by the state of its n components.
I Reliability (unlike availability) does not account for repair; a

component cannot become functional after failure.
I Components can be interdependent: the failure of one can

lead to the failure of others.

These assumptions admit a Markov model:

I Initially, all components are functional.
I Component interdependencies define transitions between

system states.
I Component reliabilities define the probability of specific

transitions.
I A trajectory through the Markov chain corresponds to a

sequence of component failures.
I System reliability is determined by the probability of

trajectories where the system remains functional.
6 / 24

System Properties of Reliability Models

An MIS reliability model captures the following system properties:

I the components in the system,

I the reliability of each component, and

I which components depend on others to remain functional.

We represent these as

I A finite set of components, C ⊂ Comps;

I A function giving a lower bound on their reliability,
R : C→ [0, 1]; and

I A finite set of dependencies, D ⊂ Deps.

Thus, a collection of system properties p ∈ Prop is a triple
p = (C,R,D).

7 / 24

Dependencies

Every element of Deps is a relation 〈c e〉 : P(C)→ P(C ∪ S).
I c are the causes of failure.
I e are the effects.
I The failure of the causes immediately leads to the failure of

their effects.
I If S (the system as a whole) appears in e, the causes in c also

bring down the system.

Generator Load
Rc1 = p

Rc2 = p

C = {c1, c2}
R(c1) = R(c2) = p

D = {〈c1 ∅〉,
〈c2 ∅〉,
〈c1, c2 S〉}

Generator Load

Rc1 = p Rc2 = p

C = {c1, c2}
R(c1) = R(c2) = p

D = {〈c1 S〉, 〈c2 S〉}

8 / 24

Examples

The same parallel system can be used to provide either redundancy
or extra capacity:

Generator Load
Rc1 = p

Rc2 = p

Redundancy:

D = {〈c1 ∅〉,
〈c2 ∅〉,
〈c1, c2 S〉}

Capacity:

D = {〈c1 c2,S〉,
〈c2 c1,S〉}

In the second system, failure of one component will be
catastrophic: the system can no longer deliver the required
capacity.

9 / 24

Generalization and Refinement of Reliability Constraints

A straightforward generalization is to loosen the reliability
constraint on a component to r < R(c):

relax rel(C,R,D)[,] : C→ [0, 1]→ Prop

relax rel(C,R,D)[c , r] , (C,R′,D)

Conversely, we can refine properties by tightening a constraint to
r > R(c):

tighten rel(C,R,D)[,] : C→ [0, 1]→ Prop

tighten rel(C,R,D)[c , r] , (C,R′,D)

where

R′(c ′) ,

{
r if c = c ′

R(c ′) otherwise.

10 / 24

Generalization: Merging Components

Two distinct components c1 and c2 can be merged into a single
component cm by replacing every instance of c1 or c2 with cm:

merge(C,R,D)[, →] : C→ C→ Comps→ Prop

merge(C,R,D)[c1, c2 → cm] , (C′,R′,D′)

where

I C′: Remove c1, c2 and add cm to C.

I R′: Set the reliability bound of cm to the minimum of R(c1)
and R(c2).

I D′: Replace every instance of c1 or c2 in D with cm.

11 / 24

Refinement: Splitting Components

One component cm can be split into two fully interdependent
components c1 and c2. Full interdependence adds the fewest
possible assumptions about the system.

split(C,R,D)[→ ,] : C→ Comps→ Comps→ Prop

split(C,R,D)[cm → c1, c2] , (C′,R′,D′)

where

I C′: Remove cm and add c1, c2 to C.

I R′: Set the reliability bound of c1, c2 to R(cm).

I D′: Replace each dependency containing cm with several
dependencies involving c1 and c2.

12 / 24

Generalization: Adding a Dependency

Independence, as compared to dependence, of two components is a
stronger constraint with significant consequences. Adding a
dependency from c to a component e means that c brings down e.

add dep(C,R,D)[] : P(C)→ C→ Prop

add dep(C,R,D)[c e] , (C,R,D′)

where

I D′: Add e to the direct effects of the dependency c.

I D′: Add e to the indirect effects of c — every dependency
that c causes.

13 / 24

Refinement: Removing a Dependency

Removing a dependency 〈c e〉 implies that e is independent of
all components in c.

remove dep(C,R,D)[] : P(C)→ C→ Prop

remove dep(C,R,D)[c e] , (C,R,D′)

where

I D′: Remove e from the effects of every dependency whose
cause includes a component in c.

Note that

I add dep affects any dependency that captures the failure of all
of c.

I rem dep affects any dependencies that captures the failure of
any of c.

14 / 24

Example

Consider the dependencies of a system with three independent
components:

D = {〈c1 ∅〉, 〈c2 ∅〉, 〈c3 ∅〉,
〈c1, c2, c3 S〉}

Introducing the dependency 〈c1, c2 c3〉 results in the following
dependencies:

D′ = {〈c1 ∅〉, 〈c2 ∅〉, 〈c3 ∅〉,
〈c1, c2 c3〉†,
〈c1, c2 c3,S〉‡

}
≡ 〈c1, c2 c3,S〉

}

I † is the new dependency added by add dep.
I ‡ results from modifying 〈c1, c2, c3 S〉.
I Both rules reduce to one as they share the same cause.

15 / 24

Properties of Generalization

I Apply a list of generalisations, g = (g1, g2, . . .), to p ∈ Prop
by first applying g1 to p, then applying g2 to the result of g1,
etc.

I Written: JgK(p).

I Properties pg generalize properties pr if there exists g such
that pg = JgK(pr).

I We can show that generalization forms a partial order:
pr v pg ⇐⇒ ∃g , pg = JgK(pr).

I No “loops”: impossible to have p v p′ v . . . v p.

I Lays the groundwork for proofs of soundness.

16 / 24

Properties of Refinement

I It is not the case that every refinement undoes its
corresponding generalization.
I For example, merging two independent components, then

splitting the resulting component results in two fully
interdependent components.

I Apply a list of refinements, r = (r1, r2, . . .), to p ∈ Prop by
JrK(p).

I Properties pr refine properties pg if there exists r such that
pr = JrK(pg).

I We can show that refinement forms a dual order to
generalization: pg w pr ⇐⇒ ∃r , pr = JrK(pg).

I These notions of refinement and generalization are
compatible: in this sense, each “undoes” the other.

17 / 24

Markov Imbedded Structure Modeling

I System states are defined by the components that are
functional.
I 1101 corresponds to the state of a 4-component system where

components 1, 2, and 4 are functional and component 3 has
failed.

I Transitions between different states occur when a component
fails.

I The system starts with all components functional.

I Every state except the last is considered functional.

Ti , Transition matrix for component i

Π0 , [1, 0, . . .] Initial state probability vector

u , [1, . . . , 0] Functional state vector

R(S) , ΠT
0 ∗ T1 ∗ T2 ∗ · · · ∗ Tn ∗ u

18 / 24

MIS Refinement Example

Goal: Refine a 2-of-3 system from properties p1.

p1 = ({c1},R(c1) = p, {〈c1 S〉}).

p1 produces this Markov chain:

1 0c1 : p
c1 : q

c1 : 1

And this MIS model:

T1 =

(
p q
0 1

)
R(S) = ΠT

0 ∗ T1 ∗ u = p

19 / 24

Example (continued)

Create another component via p2 = splitp1 [c1 → c1, c2]:

p2 = ({c1, c2},R(c1) = R(c2) = p, {
〈c1 c2,S〉, 〈c2 c1,S〉
〈c1, c2 S〉

})

Which produces the Markov chain:

11 00c1, c2 : p
c1, c2 : q

c1, c2 : 1

Now R(S) = p2 as we now take two steps through the Markov
chain.

20 / 24

Example (continued)

We can avoid adding excessive dependencies later by making c2
independent of c1: p3 = remove depp2 [c1 c2,S].

p3 = ({c1, c2},R(c1) = R(c2) = p, {
〈c1 ∅〉, 〈c2 c1,S〉
〈c1, c2 S〉

})

This adds a new state to the Markov chain:

11

01

00c1, c2 : p
c2 : q

c1 : q

c1 : 1
c2 : p

c2 : q

c1, c2 : 1

Either both components remain functional, or c1 fails and c2
remains functional, so R(S) = p2 + pq.

21 / 24

Example (continued)

Introduce the third component c3 by p4 = splitp3 [c2 → c2, c3].

p4 = ({c1, c2, c3},R(c1) = R(c2) = R(c3) = p, {
〈c1 ∅〉, 〈c2 c1, c3,S〉, 〈c3 c1, c2,S〉
〈c1, c2 S〉, 〈c1, c3 c2,S〉, 〈c2, c3 c1,S〉

})

The Markov chain is similar to the one derived from p3, but c3
adds its own transition probabilities.

111

011

000c1, c2, c3 : p
c2, c3 : q

c1 : q

c1 : 1
c2, c3 : p

c2, c3 : q

c1, c2, c3 : 1

Thus, R(S) = p3 + p2q.
22 / 24

Example (completed)

Remove the excess interdependencies for c2 and c3: p6 =
Jremove dep [c2 c1, c3,S], remove dep [c3 c1, c2,S]K(p4).

p6 = ({c1, c2, c3},R(c1) = R(c2) = R(c3) = p, {
〈c1 ∅〉, 〈c2 ∅〉, 〈c3 ∅〉
〈c1, c2 c3,S〉, 〈c1, c3 c2,S〉, 〈c2, c3 c1,S〉})

The abstracted Markov chain has two new states:

101

111 110

011 000

c1, c2, c3 : p

c1 : q

c2 : q

c3 : q c1, c2 : p
c3 : 1

c1, c2 : q

c1, c3 : p
c2 : 1

c1, c3 : q
c1 : 1

c2, c3 : p c2, c3 : q
c1, c2, c3 : 1

This is the desired system with R(S) = p3 + 3p2q.
23 / 24

Conclusions

Our goal is enabling metamodeling for resilience. To that end:

I We have created an approach to refining and generalizing MIS
reliability models.

I Our approach makes explicit the system properties
manipulated by such operations.

I Operations on these properties can alter reliability constraints,
add or remove components, and add or remove dependencies.

I We apply these operations to MIS reliability models.
I This research enables iterative design of systems.

Future work will take several directions:

I We will prove that generalizations are sound.
I We will extend the approach to higher-level modeling

operations, such as model composition.
I We plan to connect these system properties to other model

formalisms, allowing exchange of information across models.
24 / 24

Dependency Constraints

Not every subset of Deps is a coherent dependency relation; we
constrain them by the following equivalences:

I Components do not cause their own failure:

〈c · · ·1 c · · ·2〉 ≡ 〈c · · ·1 · · ·2〉,

I Effects are deterministic:{
〈· · ·1 · · ·2〉
〈· · ·1 · · ·3〉

}
≡ {〈· · ·1 · · ·2 · · ·3〉} ,

I Every dependency has a cause:

{〈∅ · · ·〉} ≡ ∅.

1 / 2

Dependency Constraints

...and these properties:

I Every component is the sole cause of some effect:

∀c ∈ C, ∃〈c · · ·〉 ∈ D,

I The system can fail:

∃〈· · ·1 S · · ·2〉 ∈ D,

I Components cannot recover from failure:

∀〈· · ·1 · · ·2〉 ∈ D,

∀〈· · ·1 · · ·3 · · ·4〉 ∈ D,

· · ·2 ⊆ · · ·3 ∪ · · ·4 .

2 / 2

	Introduction
	System Properties
	Dependencies
	Generalization And Refinement
	Metamodeling for MIS models
	Appendix

